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1 Introduction

A major goal of the Large Hadron Collider (LHC) is to unveil the origin of electroweak

symmetry breaking (EWSB). In the Standard Model (SM) the Higgs mechanism provides

a particularly attractive way to break electroweak symmetry and generate mass. It is most

simply implemented by introducing the Higgs boson, a scalar field that spontaneously

breaks the electroweak symmetry by obtaining a vacuum expectation value (VEV). If the

Higgs boson is an elementary scalar field then its mass can be stabilized by low-energy

supersymmetry. In this case supersymmetry breaking triggers the breaking of electroweak

symmetry. Alternatively the Higgs boson may be composite and therefore can be stabilized

with strong dynamics at the TeV scale [1]. A composite Higgs boson model was recently
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constructed using the holographic dual of a warped dimension [2]. But the presence of

a Higgs boson is not obligatory. As is well-known by analogy with QCD, electroweak

symmetry can also be broken by condensates in technicolor. In fact, via the AdS/CFT

correspondence, a technicolor-like Higgsless model can be constructed in a warped extra

dimension providing a more recent incarnation of this idea [3]. Nevertheless the underlying

feature of all these models is that electroweak symmetry is broken at the electroweak scale

where, in particular, the Standard Model gauge fields and fermions receive a mass by

coupling to an external Higgs sector. To generate (not just stabilize) the TeV mass scale

or gauge hierarchy in a natural way via dimensional transmutation, it seems inevitable to

have strong dynamics in this external sector (whether it be associated with electroweak

or supersymmetry breaking), together with the Standard Model gauge fields and fermions

which do not directly partake in the underlying dynamics.

Yet there is another possibility for mass generation. Just like the hadron mass spectrum

in QCD, there is no need to invoke the Higgs mechanism to generate a mass. Instead the

fermions and W,Z-bosons could be composite states which directly obtain a mass from the

underlying confining strong dynamics. This idea is not new [4], since QCD contains states

which mimic the electroweak gauge bosons. Specifically it was noticed that low-energy

QCD can be interpreted as a spontaneously broken gauge theory, where the SU(2) isospin

triplet ρ meson is the massive gauge field of a hidden local symmetry [5]. Interestingly this

interpretation can effectively explain ρ-coupling universality, ρ-meson dominance, and the

high-energy π-π scattering cross section. This bears some resemblance with electroweak

symmetry suggesting that the W,Z-bosons might be composite. Furthermore, unlike global

symmetries, gauge symmetries do not lead to new conserved charges and merely remove

the redundancy in our description of massless spin-1 particles with spacetime vector fields.

This has led to the suggestion that gauge symmetries are not fundamental [6]. In fact this

is supported by duality in four-dimensional (4D) supersymmetric theories which imply that

gauge symmetries in the SM or even general relativity could be long-distance artifacts [7].

So the idea that electroweak gauge bosons are composite represents an intriguing although

relatively unexplored possibility.

In this paper we examine this possibility by constructing an EWSB model with com-

posite W,Z bosons. Since the underlying theory is inherently strongly-coupled we use

the AdS/CFT correspondence [8, 9] to construct a calculable five-dimensional (5D) model

using a warped fifth dimension [10]. The electroweak symmetry will be assumed to be

preserved on the IR brane and the bulk, while it will be broken on the UV brane. Hence in

this model the IR brane is only used to break conformal symmetry and generate massive

states. This is opposite from the original Randall-Sundrum model and all other warped

models where EWSB is assumed to occur on the IR brane. This implies that in our model

electroweak gauge symmetry is not a fundamental symmetry and merely emerges at the

IR scale when the conformal symmetry is broken. Moreover even though our model is

effectively Higgsless at low energies because EWSB occurs on the UV brane and the Higgs

sector decouples, it still differs from the usual technicolor-like Higgsless model [3] where

EWSB occurs at the IR scale and the W,Z-boson are elementary fields.

Brane kinetic terms are a crucial feature of our model. In order to identify the lightest
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Kaluza-Klein (KK) states with composite W,Z bosons they are introduced to separate the

lowest-lying KK mode from the rest of the KK tower. This guarantees that the heavier KK

resonances of the W,Z bosons are sufficiently heavy to evade direct experimental bounds.

This leads to W and Z boson profiles that are effectively localized near the IR brane,

rendering them composite states of the dual 4D theory. While the main focus of this work

will be on the gauge boson sector we will make simplifying assumptions regarding the

fermion sector. Since electroweak symmetry is broken on the UV brane, fermions must

at least couple to the UV brane and have universal profiles in the bulk to ensure gauge

coupling universality. This will be left for future work and for simplicity we will assume

the fermions are localized on the IR brane.

The idea of composite weak gauge bosons has been previously explored in the liter-

ature [4] where attempts were made to construct the underlying preon models based on

asymptotically-free QCD. Unlike these earlier attempts the AdS/CFT dictionary relates

our composite gauge boson model to a dual 4D conformal field theory at large ‘t Hooft

coupling. In addition the weakly-coupled 5D gravity dual improves calculability allowing a

more quantitative analysis of the composite model. Consequently, a precision electroweak

analysis can be performed leading to reasonable agreement with the S, T parameters. In

particular, the T parameter is sufficiently suppressed due to a custodial SU(2) symmetry

that naturally occurs in the model. Since the gauge bosons are composite there are also

various interesting phenomenological aspects to study. In fact due to the strong coupling

the underlying composite nature of the gauge bosons is much less partonic at moderate

Bjorken x compared to QCD hadrons. In particular the composite nature of the W,Z

boson provides a novel unitarization mechanism for WW scattering based on form factor

suppression, and suggests that deviations in the scattering amplitude may be measurable,

giving rise to a distinctive signal at the LHC.

The organization of this paper is as follows. In section 2 we present an overview of

the model, outlining our various assumptions before presenting the full details of the 5D

model in a warped dimension. The electroweak precision analysis is presented in section 3

where it is shown how the model naturally admits a custodial SU(2) symmetry. The S and

T parameter are both shown to be consistent with electroweak precision tests. Section 4 is

devoted to a preliminary study on WW scattering and unitarity. Various constraints and

signatures of composite weak gauge bosons at LEP, Tevatron, and the LHC are discussed

in section 5. Finally in appendix A we present an alternative derivation of how brane

kinetic terms give rise to a light KK mode, while in appendix B we present a form factor

computation using the overlap integral.

2 Emergent EWSB

2.1 The 5D model

We begin by defining our EWSB model using the Randall-Sundrum framework [10]. Con-

sider a slice of AdS5 with 5D metric

ds2 =
1

(kz)2
(ηµνdxµdxν + dz2) ≡ gMNdxMdxN , (2.1)
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where k is the AdS curvature scale. The 5D spacetime indices are written as M = (µ, 5),

with µ = 0, 1, 2, 3, and ηµν = diag(− + ++) is the Minkowski metric. The fifth dimension

z is compactified on a Z2 orbifold, with a UV (IR) brane located at the fixed point z∗ =

zUV (zIR). The z coordinate is related to the 4D energy scale, and the scale of the UV

(IR) brane is chosen to be zUV = k−1, (zIR = O(TeV−1)) respectively, where k ≃ MP =

2.4 × 1018 GeV is the reduced Planck scale. The UV cutoff of the 5D model according

to 5D naive dimensional analysis (NDA) is ΛUV ≃ 10k [11]. This sufficiently suppresses

(non-renormalizable) higher-dimension operators in the bulk to allow for a pure 5D gravity

description, which in the 4D language reflects subdominant contributions to observables

from the strong scale.

The 5D bulk is assumed to have an electroweak symmetry, SU(2)L × U(1)Y , while

on the boundaries the electroweak symmetry is preserved on the IR brane but broken on

the UV brane. This is to ensure that the W,Z bosons are identified with the lowest-

lying KK modes peaking towards the IR brane, so that by the AdS/CFT correspondence

they are interpreted as composite states. On the UV brane the symmetry is broken by

imposing Dirichlet boundary conditions that realizes the SM symmetry breaking pattern

SU(2)L ×U(1)Y → U(1)Q. As pointed out in [3] EWSB via Dirichlet boundary conditions

can be more naturally understood as the limit of a Higgs mechanism on the boundary with

a very large VEV. Since the breaking is on the UV brane, the Higgs sector decouples and

the model is effectively Higgsless at low energies. The unbroken electromagnetic group

U(1)Q on the UV brane leads to a massless photon. In addition, even though the strong

force is irrelevant for our discussion, there are massless gluons from the unbroken SU(3)

color symmetry. So in our setup, the massive W,Z gauge fields are mostly composite, while

the massless gauge fields are mostly elementary.

There is an immediate problem with identifying the lowest-lying KK states with the

W,Z bosons. Since in the warped dimension the KK modes are essentially evenly spaced,

the next-heaviest KK states will have masses at approximately 200 GeV. This obviously

contradicts direct searches and electroweak precision data that require additional elec-

troweak gauge bosons (i.e. W ′, Z ′) to be heavier than about 1TeV [12]. Hence to obtain

a desirable mass spectrum we will introduce brane-localized kinetic terms [13, 14]. We

will see that this leads to very light lowest-lying KK modes for the W,Z bosons, while the

remaining heavier KK modes of the W,Z-boson and photon will appear at the TeV scale.

Brane kinetic terms will be added on both branes consistent with the brane symmetry.

This includes mass-dimension −1 brane kinetic term coefficients ζQ for U(1)Q on the UV

brane, and ζL, ζY for SU(2)L and U(1)Y on the IR brane, respectively. Thus the 5D action

of our model is given by

S =

∫
d4x dz

√−g

[
−1

4
(FLa

MN )2− 1

4
(F Y

MN )2− 1

2
(kz)δ(z−zUV )

ζQ
g2
Y 5+g2

L5

(gY 5F
L3
µν +gL5F

Y
µν)

2

−1

2
(kz)δ(z − zIR)

(
ζL(FLa

µν )2 + ζY (F Y
µν)

2
)]

, (2.2)

where the 5D field strengths FL
MN , F Y

MN with associated gauge fields AL
M , BM , and 5D

gauge couplings gL5, gY 5, are for SU(2)L,U(1)Y , respectively. Since only the UV boundary
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is Higgsed, the fifth components of the gauge fields are unphysical [11]. This ensures that

our model contains no A5-like holographic Higgs bosons.

Note that the brane kinetic terms in (2.2) are crucial ingredients in our model. They are

always allowed on the branes at tree level by the breaking of 5D Poincare symmetry. But

more importantly in any 5D theory with bulk gauge fields, as well as charged bulk matter

subject to orbifold boundary conditions [13] or confined to the branes [15], the divergent

radiative corrections to the gauge propagator requires that brane kinetic terms be included

as counterterms. Therefore from the effective field theory perspective the coefficients of the

brane kinetic terms are free parameters of the theory that cannot be predicted without a

UV completion of the theory. Nonetheless we will see that the 5D warped model provides

a consistent framework with which to study this possibility. Although NDA estimates the

size of the coefficients to be of order the compactification scale of the fifth dimension [16–

18], large brane kinetic terms are perturbatively consistent [19]. Thus, just like previous

analyses in [14, 17], we will assume the brane kinetic term coefficients to be free parameters

that are fixed by experimental data, and do not constrain them to be of their NDA size.

2.1.1 The gauge boson mass spectrum

The boundary conditions that realize the symmetry breaking pattern and include the brane

kinetic terms are

z = zUV :





∂z(gY 5A
L3
µ + gL5Bµ) + ζQkzIR�(gY 5A

L3
µ + gL5Bµ) = 0,

gL5A
L3
µ − gY 5Bµ = 0,

AL1,2
µ = 0,

(2.3)

z = zIR :

{
∂zA

La
µ − ζLkzIR�ALa

µ = 0,

∂zBµ − ζY kzIR�Bµ = 0,
(2.4)

where � = ηµν∂
µ∂ν is the 4D Laplacian. Imposing these boundary conditions on the bulk

solutions will lead to the mass spectrum and is similar to that performed in refs. [14, 17, 20].

Gauge fields which are mixed by the boundary conditions share the same KK mass spectrum

(although with a different 5D profile for the same KK mode). In particular this is the KK

tower containing both AL3
µ and Bµ. When Bµ is dominant, it is identified as the KK

photon tower, while when AL3
µ is dominant, it is identified as the KK Z-boson tower. For

the other tower, AL±
µ is identified as the KK W -boson tower where AL±

µ denotes the linear

combination 1√
2
(AL1

µ ∓ iAL2
µ ). The KK decomposition is therefore given by

AL3
µ (x, z) = fL3

0 (z)γµ(x) +
∞∑

n=1

fL3
n (z)Z(n)

µ (x), (2.5)

Bµ(x, z) = fB0 (z)γµ(x) +

∞∑

n=1

fBn (z)Z(n)
µ (x), (2.6)

AL±
µ (x, z) =

∞∑

n=1

fL±n (z)W (n)±
µ (x). (2.7)

We have separated out the photon γµ in the decomposition of AL3
µ , Bµ since later we

will show that there is a massless flat zero mode in this KK tower. Substituting these

– 5 –
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decompositions into the boundary conditions (2.3) and (2.4), leads to the explicit boundary

conditions for the 5D profile functions:

z = zUV :





∂z(gY 5f
L3
n (z) + gL5f

B
n (z)) + ζQ kzIR m2

Zn
(gY 5f

L3
n (z) + gL5f

B
n (z)) = 0,

gL5f
L3
n (z) − gY 5f

B
n (z) = 0,

fL±n (z) = 0,

(2.8)

z = zIR :





∂zf
L3
n (z) − ζL kzIR m2

Zn
fL3
n (z) = 0,

∂zf
L±
n (z) − ζL kzIR m2

Wn
fL±n (z) = 0,

∂zf
B
n (z) − ζY kzIR m2

Zn
fBn (z) = 0,

(2.9)

where �Z
(n)
µ (x) = m2

Zn
Z

(n)
µ (x) and �W

(n)±
µ (x) = m2

Wn
W

(n)±
µ (x). The equation of motion

for the gauge field 5D profiles fn(z) is

(
∂2
z −

1

z
∂z + m2

n

)
fn = 0. (2.10)

The general solution for the massless zero mode (m0 = 0) is given by

f0(z) = N0 + b0z
2, (2.11)

while for the massive mode the general solution is

fn(z) = Nnz(J1(mnz) + bnY1(mnz)), (2.12)

where the coefficients Nn, bn are fixed by the boundary conditions and normalization con-

dition.

We first check whether the zero mode solution (2.11) satisfies the boundary condi-

tions (2.8) and (2.9). We find that no zero mode exists for fL±0 , while for fL3
0 , fB0 there is

a constant zero mode solution

fL3
0 (z) =

N0

gL5
; fB0 (z) =

N0

gY 5
, (2.13)

where N0 is fixed by the normalization condition. The photon wavefunction is fγ(z) =√
(fL3

0 )2 + (fB0 )2.

Next we check the massive mode solutions, fL±n (z), fL3
n (z) and fBn (z). The boundary

conditions determine mn and bn, while the overall prefactors Nn are fixed by the normal-

ization condition (which we will do later). To simplify the expressions, it is also useful

to define new variables: β5 ≡ gL5/gY 5, xn ≡ mnzIR, t ≡ zUV /zIR. Due to the nontrivial

boundary conditions and Bessel function properties, numerical techniques are normally

required to solve fo mn and bn. However, since we expect there are ultra-light lowest-lying

KK modes satisfying m1zUV ≪ m1zIR ≪ 1, corresponding to the W/Z-bosons, we can use

a small argument expansion for the Bessel functions to obtain a good analytic approxima-

tion for the W/Z-boson masses. This also provides an extra check for the existence of light

lowest-lying KK modes.

– 6 –
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Consider first the analytic solution for the W -boson tower wavefunctions (fL±n ). The

coefficients bL±n are given by

bL±n = −J1(xnt)

Y1(xnt)
, (2.14)

and the KK masses are the zeroes of the algebraic equation

Y1(xnt)[J0(xn) − kζLxnJ1(xn)] − J1(xnt)[Y0(xn) − kζLxnY1(xn)] = 0. (2.15)

The W -boson is identified with the lowest-lying KK mode and an approximate expression

is given by

mW ≃
√

2

ζLk
z−1
IR . (2.16)

Therefore to obtain the observed value mW = 80.4 GeV, assuming z−1
IR = 1TeV, we need

ζLk ≃ 310. Using bL±1 ≃ (πt2)/(2kζL) the W -boson 5D profile to leading order becomes

f̃W (z) =
1

2
mW z2. (2.17)

where fW (z) ≡ fL±1 (z) and we write fW (z) ≡ NW f̃W (z) with NW a normalization constant.

Thus, with respect to a flat metric the profile is peaked towards the IR brane.

Due to the nontrivial boundary conditions, the solution for the Z-boson tower is not

as simple. The expressions for the wavefunction coefficients are

bL3,B
n =

ζL,Y kxnJ1(xn) − J0(xn)

Y0(xn) − ζL,Y kxnY1(xn)

n=1≃ (1
2ζL,Y kx2

1 − 1)π2
log(x1

2 ) + γE + ζL,Y k
, (2.18)

NB
n

NL3
n

= β5
J1(xnt) + bL3

n Y1(xnt)

J1(xnt) + bBn Y1(xnt)

n=1≃ β5
bL3
n

bBn
, (2.19)

where γE ≃ 0.577 is the Euler-Macheroni constant. Substituting the 5D profiles into the

first line of the boundary condition (2.8), gives the Z-boson mass equation:

J0(xnt)+bL3
n Y0(xnt)+β5

NB
n

NL3
n

(J0(xnt)+bBn Y0(xnt))+ζQk(1+β2
5)xnt(J1(xnt)+bL3

n Y1(xnt)) = 0.

(2.20)

Using the expressions (2.18) and (2.19), an approximate solution of (2.20) can be obtained

in the limit of vanishing ζY and large ζQ (i.e. ζQ ≫ log t), with β5 ∼ O(1) (as we will see this

limit also helps to obtain a good fit to the T parameter). This leads to the Z-boson mass:

mZ ≃
√

2

ζLk
+

2

ζQk(1 + β2
5)

z−1
IR . (2.21)

Assuming z−1
IR = 1TeV, the observed Z-boson mass, mZ = 91.2 GeV, is obtained for

ζQk ≃ 500. Note that in the large ζQ or large β5 limit, mZ = mW , suggesting that there

is a custodial symmetry in our model, as we will show later. An approximate analytic

– 7 –
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Figure 1. The W -boson (solid) and Z-boson (dashed) profiles in units of
√

k.

expression for the 5D Z-boson profile can also be obtained in the above limit from fL3
1 and

fB1 , giving rise to

f̃L3
1 (z) =

1

2
mZz2 − m−1

Z

ζQk(1 + β2
5)

, (2.22)

f̃B1 (z) = −β5 log(mZzIR)

2ζQk(1 + β2
5)

mZz2 − β5m
−1
Z

ζQk(1 + β2
5)

, (2.23)

where fL3,B
1 ≡ NZ f̃L3,B

1 and NZ is a normalization constant. The Z-boson profile is then

given by fZ(z) =
√

(fL3
1 )2 + (fB1 )2 and the W/Z-boson profiles are plotted in figure 1.

Thus we again see that with respect to a flat metric, just like the W -boson, the Z-boson

is localized near the IR brane.

It is important to note that the bulk profiles (2.17), (2.22), and (2.23), plotted in

figure 1 do not depict the complete localization information. Recall that the profile density

|f(z)|2 represents the probability of finding a particular mode in the AdS slice (including

the branes). The canonical normalization of the profile ensures a unit probability of locating

the mode somewhere in the AdS slice. However the bulk profiles depicted in figure 1 do

not give rise to a unit probability distribution, in fact they only contribute a small fraction

to the whole normalization. This is because the contributions from the boundary kinetic

terms are not shown. They actually give rise to a large contribution to the normalization

which together with the bulk contribution leads to a unit probability distribution.

Since the boundary kinetic terms are given in terms of a singular δ-function their

contribution cannot be depicted in figure 1. This is related to the assumption that the

branes are infinitely thin, which is just a mathematical approximation in the low energy

EFT. However we know that physically branes must have a finite thickness, related to the

5D cutoff scale M5, where the brane-generating dynamics becomes important. The origin

of the 3-branes can be field theory domain walls [16, 21, 22], or effectively arising from

– 8 –
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warped throats in string theory [23]. Consequently, assuming a finite brane thickness, the

δ-function localized boundary kinetic term should actually be represented by a smoothed-

out profile within the brane thickness. For the W,Z profiles this gives rise to a much sharper

but finite peak around the IR brane than is naively depicted in figure 1. Even though the

profile within the brane thickness cannot be determined in our EFT approach, we know

that the integral over the profile density within the IR brane should match ζ(f(zIR))2,

where f(zIR) is the bulk solution evaluated at the IR brane. As we will see later, the brane

thickness has a nontrivial influence for matching to the Standard Model.

Although we have focused on the ultra-light first KK modes, which are identified with

the W/Z bosons, it is necessary to check whether the higher KK modes are compatible with

experimental constraints. Numerically we find that the second KK W/Z-boson is typically

around 4 TeV. However if ζY is large, the first KK photon (recall that the photon KK tower

has a massless zero mode) can be much lighter than the TeV scale, since as we have seen, a

large brane kinetic term is responsible for an ultra-light KK mode. Such a light KK photon

conflicts with the known bounds on the Z ′ boson mass [12], although it can be partly com-

pensated by the reduced coupling arising from the brane kinetic terms which suppress the

KK wavefunctions on the boundary [17, 20]. Nevertheless to be safely within experimental

bounds we choose small ζY ∼ 0.1k−1 so that the first photon KK state has a mass around

2 TeV. Its coupling to fermions is similar to that of the zero-mode photon although it de-

pends on the details of the fermion localization. In the next section, we will see that a small

ζY is also necessary to ensure a custodial protection for the T parameter of the model.

Therefore we see that to obtain the correct W,Z-boson masses while maintaining com-

patibility with other constraints the brane kinetic term coefficients cannot all be of the

same order, and there must be a small hierarchy between ζY and ζL, ζQ, of approximately

10−3. However as argued earlier, brane kinetic term coefficients are free parameters de-

termined by unknown strong dynamics, and all the chosen values are ‘reasonable’ from an

effective field theory point of view, so there should be no problem with the small hierarchy

between ζY and ζL, ζQ.

2.1.2 Fermions

As mentioned earlier, we are focusing on composite weak gauge bosons in this paper.

Nevertheless it behooves us to comment on the fermions since they are an integral part of

a complete mass generation framework for the SM. If fermions are to obtain their masses

from EWSB on the UV brane then they should have a nonzero coupling there. The simplest

solution would be to confine them on the UV brane. However this is not a realistic solution

because it would lead to vanishing gauge couplings since the W,Z-bosons have Dirichlet

boundary conditions there. Instead the fermions must be bulk fields with the same profile

for all flavors. This is because the non-flat electroweak gauge boson profiles (see figure 1)

require the fermion profiles to be universal in order to ensure a universal gauge coupling.

Unlike models with flat gauge-boson profiles where gauge coupling universality is automatic

once fermion profiles are canonically normalized, a non-flat gauge boson profile causes the

gauge-boson-fermion-fermion overlap integral (corresponding to the 4D gauge coupling)

to be very different for different fermion profiles. Moreover requiring a universal fermion
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profile no longer allows the fermion mass hierarchy to be explained by the “geography” in

the warped dimension [24, 25].

There is an alternative possibility which is to introduce fermion mass terms on the

UV brane. With Planck-scale boundary masses and IR localization a common but O(TeV)

mass scale can be obtained for the zero mode fermions. To distinguish between the flavors, a

new flavor symmetry that is broken on the UV brane can be introduced. The fermion mass

hierarchy can then be explained by a Froggatt-Nielsen mechanism on the UV brane with

different charge assignments when the flavor symmetry is broken. Assuming a universal

bulk fermion profile (ensured with a universal bulk mass term), approximate universal

gauge couplings are then preserved as long as the fermions are light compared to the IR

scale, z−1
IR . Interestingly, the slight deviations from universality of the heaviest fermions

could have a palliative effect on small strains among the Z → bb̄ observables. We postpone

a detailed study of the fermion sector since it is outside the scope of the present work.

But for concreteness we assume that the fermions are confined to the IR brane in order to

perform an electroweak precision analysis of the gauge-boson sector. This approximates a

bulk fermion profile that is peaked near the IR brane.

2.2 EWSB and the dual 4D interpretation

In order to facilitate a deeper understanding of the 5D model we discuss in more detail how

electroweak symmetry is broken and present the 4D dual interpretation via the AdS/CFT

correspondence. This will also help to understand some aspects of precision electroweak

tests in the next section. The underlying physics of our 5D model is different from other

existing models of EWSB in warped space. In the 5D model EWSB occurs on the UV brane

via Dirichlet boundary conditions. This leads to W/Z-bosons appearing as ultra-light first

KK mode states that arise from introducing brane kinetic terms, while higher KK modes

are of order the TeV scale, consistent with experimental constraints and can possibly be

seen at the LHC.

It is interesting to compare our model with the technicolor-like 5D Higgsless model [3].

In the Higgsless model EWSB occurs on the IR brane via Dirichlet boundary conditions,

and the W/Z-bosons are identified with the first KK modes that are light due to a suppres-

sion from the logarithmn of the warp factor. At first glance it appears that our model is just

the Higgsless model where the UV and IR boundary conditions have been interchanged,

together with the addition of brane kinetic terms. However the underlying physics is quite

different, which is made clearer by describing the model in the 4D dual picture. As noted

in [3], a Dirichlet boundary condition for a gauge field is equivalent to a modified Neu-

mann boundary condition where the gauge field is coupled to a brane Higgs field in the

large VEV limit (which decouples the Higgs boson rendering the low-energy theory “Hig-

gsless”). Therefore an intuitive way to see how the W/Z-bosons obtain a mass is to vary

the VEV of the brane Higgs field.

When the 4D electroweak symmetry is restored by a zero VEV in the technicolor-like

5D Higgsless model, the bulk gauge fields have exact massless zero modes that are identified

with the W/Z-bosons. The higher W/Z KK modes are massive and degenerate, obtaining

their mass from the breakdown of conformal symmetry (due to the presence of the IR

– 10 –



J
H
E
P
1
1
(
2
0
0
9
)
0
8
0

brane). When the VEV is switched on and the electroweak symmetry is broken, the mass

spectrum gets deformed. The original massless zero modes obtain an electroweak scale

boundary mass that arises entirely from the gauge coupling to the IR Higgs. In contrast,

the higher KK masses are only slightly shifted (not ‘generated’) due to the coupling to

the IR Higgs, with the major portion of their mass still due to the breaking of conformal

symmetry. In the Higgsless limit, only the Higgs field itself decouples, while the original

gauge field zero modes remain in the spectrum as the lowest-lying KK state (which are

identified as the massive W/Z-bosons via the usual Higgs mechanism).

Thus, the point we would like to stress is that in the Higgsless model, and other existing

EWSB models in warped space, the contribution to the W/Z-boson mass is entirely from

the boundary Higgs mechanism. Alternatively, in the 4D dual description, the W/Z-

bosons are elementary gauge fields,1 that are ‘external’ to the strongly coupled CFT. The

breaking of conformal symmetry at the TeV scale triggers EWSB and generates the W/Z-

boson masses through the electroweak gauge interaction between the W/Z-bosons and

some Higgs-like field (or in technicolor language, the techni-pions). All of the mass is due

to electroweak symmetry breaking via a Higgs mechanism.

By contrast in our model EWSB occurs by imposing Dirichlet boundary conditions on

the UV brane. Again these boundary conditions can be interpreted as modified Neumann

conditions with a UV brane Higgs and Planck scale VEV. To see the role played by a UV

Higgs we can compare the mass spectrum with that obtained when electroweak symmetry is

restored. For simplicity consider just the W -boson and change the UV Dirichlet boundary

conditions in (2.3) to be pure Neumann, while still allowing nonzero brane kinetic terms.

As expected the mass spectrum now contains a massless mode and a light first KK mode

due to the brane kinetic term with mass m1 ≃
√

2/(ζLk) + 2/(πkR)z−1
IR ∼ 3mW , where

mW is the W -boson mass given in (2.16), while the higher KK mode masses just get shifted

at the 1% level.

To study how the mass spectrum in the electroweak symmetric limit changes we con-

sider a UV brane Higgs with a VEV. The mass spectrum will change depending on how

the KK modes couple to the UV brane. Let the profile of the massless mode and first

KK mode be denoted by fW0 (z), fW1 (z), respectively. The fW0 profile is constant, while the

profile fW1 peaks towards the UV brane with boundary value fW1 (zUV ) ∼ 3fW0 (zUV ). The

localization of the first KK mode near the UV brane is due to the IR brane kinetic term.

The remaining KK modes are peaked towards the IR brane. Since only the massless zero

mode and first KK mode largely overlap with the UV brane it is a reasonable approxima-

tion to consider this two-state system coupling to the UV brane Higgs. Suppose that the

UV Higgs boson has a VEV v, then the 2 × 2 mass-squared matrix is

M2 ≃
(

0 + g2
L5v

2f2
0 (zUV ) g2

L5v
2f0(zUV )f1(zUV )

g2
L5v

2f0(zUV )f1(zUV ) m2
1 + g2

L5v
2f2

1 (zUV )

)
=

(
ǫ2
0v̂

2 ǫ0ǫ1v̂
2

ǫ0ǫ1v̂
2 m2

1 + ǫ2
1v̂

2

)
, (2.24)

1It is straightforward to check that in the technicolor-like Higgsless model, although the massive W/Z-

bosons are the lowest-lying KK modes, their wavefunction is localized towards the UV brane, in contrast

to the higher KK modes which are peaked on the IR brane. In this sense it is dual to a mostly elementary

4D field.
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where f0(zUV ) = ǫ0

√
k with ǫ0 ≃ 1/

√
ζLk + πkR, f1(zUV ) = ǫ1

√
k with ǫ1 ≃ 1/

√
πkR and

v̂2 = g2
L5k v2. After diagonalization, in the limit v ≫ m1 and m1/v ≪ ǫ0,1, the two mass

eigenvalues are

m̃2
0 = (ǫ2

0 + ǫ2
1)v̂

2 + O(m2
1) ≃

g2
L5

πR
v2, (2.25)

m̃2
1 =

ǫ2
0

ǫ2
0 + ǫ2

1

m2
1 + O

(
m4

1

v2

)
≃ πR

ζL
m2

1. (2.26)

We see that in the limit v → ∞, where the UV Dirichlet boundary conditions are restored,

there is one heavy mode that decouples from the low-energy 4D theory, while a light KK

mode remains in the spectrum (which is identified as the W -boson). Note that in (2.25) the

heavy mode m̃0 obtains a mass proportional to v via the usual Higgs mechanism associated

with the UV Higgs. It is the counterpart of the W/Z-boson in the 5D Higgsless model —

they both originate from the zero mode before EWSB, although strictly speaking it is not

precise to correlate the new massive mode with just the original zero mode or the first

KK mode since both original states are highly mixed due to the UV Higgs. Nevertheless

the main difference is that the original zero modes in our model eventually decouple and

become irrelevant to the low-energy SM since they receive a Planck scale mass from the UV

Higgs, while the original zero modes in the 5D Higgsless model [3] remain in the low-energy

theory as the W/Z-bosons since they obtain an electroweak scale mass from an IR Higgs.

Instead in our model the W/Z-bosons are identified with the light mode whose mass m̃1

originates from the previous first KK mode. In fact from (2.26), m̃1 depends on m1 which is

determined by the IR scale and the brane kinetic term coefficients. The actual contribution

from the UV Higgs is sub-leading and highly suppressed. So the major difference is that

unlike most existing EWSB models, the W/Z-bosons in our model do not obtain a mass

from the Higgs mechanism, which breaks electroweak symmetry on the boundary. Instead,

except for a reduced mass due to the brane kinetic terms, they are just like the usual

KK modes whose mass originates from the CFT breaking scale regardless of the existence

of the EWSB Higgs at the boundaries. Thus the novel feature of our model is that the

W/Z-bosons obtain their mass from two different 5D locations: a dominant contribution

from conformal symmetry breaking at the IR brane and a sub-dominant contribution from

EWSB on the UV brane. The actual mass difference between the W and Z-boson arises

from the mixing on the UV brane introduced by finite values of gY 5 and ζQ.

Our model can also be understood from the dual 4D interpretation. Using the

AdS/CFT dictionary [26], the bulk 5D gauge symmetry corresponds to a global sym-

metry in the 4D CFT. The unbroken gauge symmetry on the UV brane weakly gauges

that particular subgroup of the global symmetry. Therefore the 4D dual of our model is a

strongly-coupled CFT with an SU(2)L×U(1)Y global symmetry, whose U(1)Q subgroup is

weakly gauged. This suggests that electroweak symmetry is not a fundamental gauge sym-

metry. The W/Z-bosons are CFT bound states created by the global current associated

with the electroweak global symmetry. The dominant contribution to their masses arises

from the IR conformal symmetry breaking scale, while their mass difference results from

EWSB in an elementary sector at the UV scale. To explain their universal coupling to
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matter as experimentally observed, we can interpret them as gauge fields of some hidden

local symmetry by promoting the previous global electroweak symmetry to be local, as was

similarly done for the ρ meson in QCD — this is just the usual Standard Model Yang-Mills

theory, which has been proved to be a very successful effective low-energy description.

If we want to further explore the strong dynamics which ‘possibly’ underlies the SM or

its 5D dual, we may ask: what kind of ‘special dynamics’ gives rise to large brane kinetic

terms or their 4D dual counterpart? Why does this introduce an additional light collective

mode? As mentioned in the introduction, in 5D models with orbifold compactification or

bulk fields interacting with brane fields, brane kinetic terms necessarily emerge as countert-

erms for loop corrections of the gauge field propagator. Also as demonstrated in [19], there

is no problem with having a larger brane kinetic term compared to NDA as needed in our

model. In fact the existence of large brane kinetic terms is consistent with our model where

a large number of matter fields are localized on the IR brane assuming that brane kinetic

terms originate from interactions with brane localized matter [15]. Similarly, on the UV

brane a large brane kinetic term could result from integrating out a large number of string

states. The 4D dual description of brane kinetic terms are bare kinetic terms emerging

at the appropriate cutoff scales. According to the AdS/CFT correspondence, the 4D dual

description of obtaining an IR brane kinetic term from a one-loop counter-term is related

to sub-leading large-N effects for the corresponding operator correlation function in the

CFT [27]. Of course, there could be other possibilities leading to large brane kinetic terms,

including large volume effects at the brane locations, or possibilities related to the physics

of stabilizing the radion [19]. In appendix A we use the 4D KK modes to demonstrate

more clearly how an ultra-light mode generically arises with a large brane kinetic term

compared to directly solving the 5D equations of motion. By introducing a brane kinetic

term, the 4D KK spectrum changes due to kinetic mixing and mass mixing induced by the

boundary kinetic term.

At this point it is instructive to comment on the relation of our model to the original

RS1 model with the Standard Model confined on the IR brane [10]. We have seen that for

fixed zIR, specific values of ζL, ζQ can give rise to realistic non-zero W,Z-boson masses.

It is interesting to study the limit of large brane kinetic terms (with zIR fixed). The

W,Z-bosons in our model then become increasingly confined to the IR brane. They are

also becoming lighter, while the remaining Kaluza-Klein modes are becoming increasingly

heavier. Eventually as the brane kinetic terms become infinite the remaining Kaluza-Klein

modes decouple and we are left with massless W,Z bosons confined on the IR brane. This

can be seen in more detail by considering, for example, the W -boson. Naively we would

expect the limit ζL → ∞ to be singular. However, from eq. (2.2) the normalization of the

W -boson profile is given by

N2
W

[∫
dz

kz
(f̃W (z))2 + ζL(f̃W (zIR))2

]
= 1. (2.27)

Substituting the expressions for the W -boson mass (2.16) and profile (2.17), we find that

when ζL → ∞, the bulk integral part of (2.27) vanishes, while the boundary kinetic term

part is finite and can be normalized to one. This means that a massless W -boson is com-
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pletely localized on the IR brane. This is similar to RS1 when the gauge bosons are massless,

except that our photon is an elementary field with a large localization on the UV brane

whereas in RS1 the photon is also confined to the IR brane. Of course the major difference

between our model and RS1 is the way in which the W,Z-bosons obtain a mass. In RS1

there is an associated Higgs sector also confined on the IR brane to give mass to the elec-

troweak gauge bosons. By contrast in our model the W,Z-bosons obtain a mass from finite

boundary kinetic terms that allows the W,Z-bosons to obtain a bulk profile with a corre-

sponding KK mass. Therefore we see that brane kinetic terms generalize the usual setup,

providing a way to interpolate between the localized bulk profile and the boundary fields.

Finally we briefly comment on the interesting possibility that our scenario admits

an ‘effective’ dual description in terms of a Higgs mechanism implemented with a non-

linear σ−model, where ζ−1
L , ζ−1

Q play a role similar to the VEV (see (2.16) and (2.21)).

This is analogous to the dual description that can be made when interpreting the QCD

ρ meson as a massive gauge boson of spontaneously broken hidden local symmetry [5].

In more ‘modern’ language, this suggests that our composite 4D model could be a non-

supersymmetric example of Seiberg duality [28, 29], where the underlying strong confining

gauge theory has a low-energy dual description as a weakly-coupled gauge theory in the

Higgs phase, and the emergent composites are effective degrees of freedom. However to

understand this better requires a detailed knowledge of the constituent gauge theory.

3 Electroweak precision analysis

Just like any new physics beyond the SM, our model needs to be consistent with a preci-

sion electroweak analysis. As in [30] we focus on oblique corrections, characterized by the

S and T parameters, and briefly discuss the V parameter. Although both a light Higgs

boson theory like the SM and technicolor-like Higgsless EWSB models are well-motivated

theoretically, the Higgsless models are disfavored compared to models with a light Higgs bo-

son. The major reason being that the S parameter in the technicolor-like Higgsless models

is typically large and positive, which is ruled out by precision electroweak measurements.

Instead, we find that our emergent model can give a reasonable fit to the S parameter. Fur-

thermore, there is also a built-in custodial symmetry, so that the T parameter is compatible

with experimental constraints. The better agreement of our model with electroweak preci-

sion tests, especially the S parameter, compared to the usual Higgsless models originates

from their essential differences in the underlying physics discussed in the previous section.

To calculate the S and T parameters we will use the same matching scheme as in [30].

For simplicity the fermions are assumed to be localized on the IR brane where they obtain

a nonzero coupling with the gauge bosons. The radiative corrections will be oblique by

requiring that the couplings of the IR-localized fermions give exactly the leading order

coupling relations. When there are no boundary kinetic terms the matching of 4D couplings

with 5D couplings is simply given by g4 = g5fA(zIR) where fA(z) is the bulk gauge field

profile. This is the case that has been considered in the literature. However with boundary

kinetic terms there is a δ-function contribution to the profile as mentioned in section 2.1.1.

Its contribution can be incorporated into the matching by including the physical brane
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thickness ∆ ≃ (0.01 − 0.1)z−1
IR , as mentioned earlier. The matching now becomes

g4 = g5

∫ zIR

zIR−∆

dz

(kz)4
fψ(z)fψ(z)f̄A(z), (3.1)

where fψ is the fermion profile, and f̄A is the modified IR profile of the gauge field satisfying
∫ zIR

zIR−∆

dz

kz
(f̄A(z))2 = ζ(fA(zIR))2, (3.2)

for a brane kinetic term coefficient ζ. This effectively means that the bulk gauge field

profile at the IR brane, fA(zIR), is scaled by a factor
√

1 + δ, where δ ≃ 10− 100 depends

on the specific profile within the brane thickness and the brane kinetic term coefficient. In

our EFT approach it is an undetermined parameter that regulates the underlying dynamics

associated with the δ-function singularity of the IR brane. In order to respect the bulk and

brane symmetries we find that this regulator needs to be universal for all gauge field profiles.

The couplings of an SU(2)L doublet fermion to gauge bosons can then be obtained

from the bulk covariant derivative on the IR brane.

√
1 + δ

(
gL5T3A

L3
µ + gL5T±AL∓

µ +
Y

2
gY 5Bµ

) ∣∣∣∣∣
z=zIR

=
√

1+δ

{
N0Qγµ+gL5f

L∓
1 (zIR)T±W∓

µ +gL5f
L3
1 (zIR)

(
T3+

gY 5f
B
1 (zIR)

gL5fL3
1 (zIR)

Y

2

)
Zµ

}
, (3.3)

where we have used the KK decompositions (2.5)–(2.7) and the photon profile (2.13).

Note that in (3.3) the scaling factor is mostly effective for the photon and W,Z-bosons,

since the normalization of the higher KK modes is primarily from the bulk integral and

not the boundary kinetic terms. The SM fermion hypercharge is denoted by Y , the

electric charge by Q = T3 + Y/2 and T± denote the weak isospin charge. Note that the

universal nature of the scaling factor
√

1 + δ is crucial in order to obtain the correct

electric charge. To match to the SM, we require that (3.3) reproduce the SM fermion

couplings in terms of the 4D gauge couplings g, g′. We first write down two relations that

determines the matching between the 5D and 4D gauge couplings which are independent

of the wavefunction normalizations:

g′2

g2
= − gY 5f

B
1 (zIR)

gL5fL3
1 (zIR)

≡ − fB1 (zIR)

β5fL3
1 (zIR)

, (3.4)

1

e2
=

1

g2
+

1

g′2
≡ 1

(1 + δ)N2
0

. (3.5)

The normalization N0 can be easily fixed using the fact that U(1)Q is unbroken, so the pho-

ton kinetic term, with kinetic term coefficient Zγ , should always be canonically normalized:

Zγ =

∫ zIR

zUV

dz

kz

[
(fB0 (z))2 + (fL3

0 (z))2
]
+

ζQ
g2
Y 5 + g2

L5

[
gY 5f

L3
0 (zUV ) + gL5f

B
0 (zUV )

]2

+ζL(fL3
0 (zIR))2 + ζY (fB0 (zIR))2,

=
N2

0

g2
L5k

[
(1 + β2

5) log

(
zIR
zUV

)
+ ζQk(1 + β2

5) + ζLk + ζY kβ2
5

]
= 1. (3.6)
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Therefore the full matching between the 4D and 5D gauge couplings is determined

by (3.4), (3.5) and (3.6) to be:

g2 = g2
L5k(1 + δ)

(
1 − β5f

L3
1 (zIR)

fB1 (zIR)

)[
(1 + β2

5) log

(
zIR
zUV

)

+ζQk(1 + β2
5) + ζLk + ζY kβ2

5

]−1

, (3.7)

g′2 = −g2 fB1 (zIR)

β5fL3
1 (zIR)

. (3.8)

These matching relations can be used to fix the normalization factors for fB1 (z), fL3
1 (z)

together with the following relations obtained by matching (3.3) to the SM result:

gL5

√
1 + δfL±1 (zIR) = g, (3.9)

gL5

√
1 + δfL3

1 (zIR) = g cos θw ≡ g2

√
g2 + g′2

, (3.10)

where θw is the weak mixing angle. Note that in (3.9) the universal scaling factor associ-

ated with the brane thickness does not cancel and leads to the estimate g2
L5k ≃ 132/(1+ δ)

for the parameters used in section 2.1.1. Thus for δ ∼ 10 the 5D coupling remains

perturbative although clearly without the brane thickness the 5D theory would be

strongly-coupled [31]. Alternatively the scaling factor in (3.9) and (3.10) effectively plays

the role of a brane coupling renormalization for the gauge interaction. In the presence of

wavefunction renormalization from boundary kinetic terms this factor is also generated

by radiative corrections and so must be included.

Using the definitions (2.22) and (2.23) the normalization factor NZ from (3.10) is

given by:

NZ =
1√

1 + δ

g

gL5

1√
1 + g′2/g2

1

f̃L3
1 (zIR)

,

=

√
− β5k

f̃L3
1 (zIR)f̃B1 (zIR)

[
(1+β2

5) log

(
zIR
zUV

)
+ζQk(1+β2

5 )+ζLk+ζY kβ2
5

]− 1

2

. (3.11)

As expected the normalization NZ does not depend on the rescaling factor
√

1 + δ. Having

set up the matching and normalization for our model, we are now ready to begin the

precision electroweak analysis.

3.1 Custodial symmetry and the T -parameter

As is well known, a major criteria for realistic EWSB model-building is to ensure that the

tree-level mass ratio between the W -boson and Z-boson satisfies the relation:

ρ ≡ m2
W

m2
Z cos2 θw

= 1. (3.12)

The deviation from this tree-level prediction due to new physics is well constrained by

precision electroweak data [32] in terms of the T parameter, defined by [33]

T ≡ ρ∗(0) − 1

α
=

4π

sin2 θw cos2 θwm2
Z

(Π11(0) − Π33(0)), (3.13)
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where ρ∗ is the theory prediction, and α = 1/128.9 is the fine structure constant at the Z-

pole. An automatic way to ensure that ρ = 1 at leading order and is well protected from ra-

diative corrections is to introduce a custodial SU(2) symmetry which ensures that the triplet

AL1,2,3 masses are degenerate in the AL3 − B decoupling limit when EWSB occurs [34].

In the usual models where the W/Z-bosons obtain their mass from an elementary

Higgs doublet, a custodial SU(2) symmetry naturally appears due to the larger global

symmetry of the Higgs potential SO(4) ≃ SU(2)L × SU(2)R, whose diagonal subgroup

SU(2)D remains unbroken. However in other models like the Little Higgs model, and the

technicolor-like Higgsless model, custodial SU(2) does not automatically appear, and needs

to be introduced to the simplest scenarios. Similarly, in our model it appears that there

is no custodial symmetry, since the maximal symmetry group is just the SM electroweak

group SU(2)L×U(1)Y . However, there is a special custodial mechanism already built into

our simple model in the small ζY limit. The custodial symmetry is just the SU(2)L itself!

To see how this comes about, consider the limit where ζY = 0. It would appear that

when the bulk SU(2)L × U(1)Y symmetry is broken to U(1)Q, the broken SU(2)L cannot

survive as the custodial symmetry. However recall that the W,Z-bosons do not originate

from the zero modes. Instead they are true KK modes which obtain a mass from the

presence of an IR brane (or the breaking of conformal symmetry) even in the absence of

electroweak symmetry breaking at the boundaries. At each KK level there is an SU(2)

triplet of massive vector bosons. By contrast in usual models the zero-mode SU(2) triplet

becomes the massive SM triplet W 1,2,3 when symmetry-breaking boundary conditions are

added. However without an additional bulk custodial symmetry there is no guarantee that

the T parameter is small for these boundary-generated masses. Although a SM-like EWSB

with custodial symmetry can be implemented by Higgsing at the IR boundary to ensure

ρ = 1 at leading order, there is typically a large log(zIR/zUV ) enhanced contribution to the

T parameter from the bulk integral without a bulk custodial symmetry [35, 36]. Instead in

our case the triplet KK modes, W 1,2,3 are guaranteed to be degenerate in mass due to the

bulk SU(2)L symmetry which acts as a custodial symmetry. This is similar to the isospin

symmetry in QCD which is an approximate symmetry of the ρ-meson spectrum.

This is no longer the case if ζY is nonzero. The UV mixing between AL3 and B causes

them to have a common KK mass mZn in eq. (2.9). When ζY = 0, the IR boundary

condition of fB is independent of fL3, so there is no additional mixing between AL3 and

B. However, with nonzero ζY , additional non-SM-like mixing occurs between AL3 and B,

parameterized by the same mZn . This means that nonzero ζY causes the ρ parameter to

deviate away from one, and therefore in a realistic model ζY should stay small relative to

ζQ and ζL. It cannot be simply set to zero because no symmetry forbids such a term. Thus,

we rely on a small hierarchy between the different brane kinetic term coefficients which can

be due to some underlying strong dynamics, and is consistent from the EFT point of view.

To explicitly check the custodial symmetry and compute the T parameter in our model

we use eq. (3.13). In 5D models the expressions for the various Π’s can be obtained directly
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from the bulk integrals [11]

g2Π11(0) =

∫
dz

kz
|∂zfW (z)|2, (3.14)

(g2 + g′2)Π33(0) =

∫
dz

kz

[
|∂zfL3

1 (z)|2 + |∂zfB1 (z)|2
]
. (3.15)

An analytic expression can be obtained but cannot be given in a simple form with sufficient

precision due to the complexity of the expression. However an analytical fit can be done

numerically and leads to an analytic approximation for the T parameter

T ∝ 1

α
(mZzIR)2. (3.16)

We can can see that there is no large log enhancement and depends quadratically on mZzIR.

Furthermore, the adjustable large brane kinetic term or small hierarchy between mW ,mZ

and the higher KK scale ≃ z−1
IR can give enough suppression for the T parameter to be

compatible with the LEP bound. A benchmark point will be given numerically later which

fits both S and T .

3.2 S-parameter

The oblique correction parameter S is defined as

S ≡ 16π(Π′
33 − Π′

3Q), (3.17)

and is directly related to the wavefunction normalization of Z:

ZZ = 1 − Π′
ZZ = 1 − (g2 + g′2)(Π′

33 − 2 sin2 θwΠ′
3Q + sin4 θwΠ′

QQ), (3.18)

where Π′
γγ = e2Π′

QQ and Π′
γZ = gg′(Π′

3Q − sin2 θwΠ′
QQ). Since the photon wavefunction

is already canonically normalized, Π′
QQ = 0. Furthermore Π′

3Q = 0, since we are doing

a tree-level calculation in 5D (corresponding to loop level in 4D), and there is no Z − γ

mixing. Thus we obtain:

S =
16π

g2 + g′2
(1 − ZZ), (3.19)

where ZZ = 1−(g2+g′2)Π′
33. The wavefunction normalization, ZZ is calculated by integrat-

ing the bulk gauge profiles, as well as including the boundary kinetic term contributions:

ZZ = N2
Z

{∫
dz

kz

[
(f̃L3

1 (z))2 + (f̃B1 (z))2
]

+
ζQ

1 + β2
5

[
f̃L3
1 (zUV ) + β5f̃

B
1 (zUV )

]2

+ζL(f̃L3
1 (zIR))2 + ζY (f̃B1 (zIR))2

}
,

≃ 1 + O(10)(mZzIR)2. (3.20)

where the analytic expression is to leading order in mZzIR. Again the analytical fit is

done by numerical evaluation. Using (3.19), the analytic expression for the S parameter

thus becomes:

S ∝ 16π

g2 + g′2
(mZzIR)2. (3.21)

– 18 –



J
H
E
P
1
1
(
2
0
0
9
)
0
8
0

This expression reveals several important features of S in our model: S is always positive

and lowering mZzIR is the most efficient way to obtain a small S. This can be intuitively

understood using the 4D dual interpretation. The S parameter shift arises from the

self-energy diagram where the Z-boson mixes with the KK modes below the cutoff scale

which then couples to a fermion loop. With larger KK masses-scaling like z−1
IR — this shift

is suppressed by m2
KK. Therefore, as the mass difference between the Z-boson (which is a

special light KK mode) and the higher KK mode gets larger, the contribution from higher

KK modes to S tends to decouple due to the mass suppression.

It should be emphasized that our model and technicolor-like Higgsless models face a

common challenge to obtain a sufficiently adequate S parameter. This arises from the sum

over KK modes below the cutoff scale, which gives a factor N — the number of KK modes

below the cutoff scale, proportional to the number of colors in the 4D dual theory. For the

AdS/CFT duality to be valid, N has to be large which implies a large S in general. So

additional suppression is always required. In our model the extra suppression factor comes

from the small hierarchy between mZ and the IR scale (higher KK mass), which is realized

by introducing brane kinetic terms — an ingredient already built into the model. Another

possibility is to reduce the fermion couplings to KK modes by considering fermions with a

flat profile [37]. This approach is not taken in our EWSB scenario because fermions should

have profiles which are peaked towards the IR brane.

Let us now numerically compare our result for the S parameter with experiment.

Assuming z−1
IR = 1TeV, we find that S = 0.3, which when compared to the LEP bound [32],

suggests a higher IR scale is needed to fit precision tests. A benchmark point which fits

the T − S 68% probability contour according to LEP data [32] is obtained with the input

parameter set: z−1
IR = 1.8TeV, ζLk ≃ 1000, ζQk ≃ 1700, ζY k ≃ 0.2. This gives the correct

W,Z-boson masses and S ≃ 0.1, T ≃ 0.05. Note that when comparing with the LEP

contour, we subtracted the contribution from mH = 114 GeV, which together with mt =

178 GeV defines the reference point at the origin. This differs from how this contribution

is treated in technicolor-like Higgsless models. In these models the W/Z-bosons obtain a

mass from the Higgs mechanism even though the theory becomes ‘Higgsless’. This means

that an extra TeV-scale heavy Higgs contribution must be added to the S, T values which

causes a preference for a slightly negative S and positive T [37]. However, in our model

we do not need to add such a contribution from a heavy Higgs. As discussed in section

2, the W/Z-boson masses in our model do not arise from the Higgs mechanism. Instead

their mass originates from the IR scale, or the conformal symmetry breaking scale in the

4D dual interpretation. There is a usual Higgs mechanism on the UV brane which gives a

UV scale mass to the original zero mode gauge field causing it to decouple. But the UV

Higgs mechansim is not responsible for generating the W/Z-boson masses. Therefore a

small positive S is sufficient to satisfy the precision tests in our model.

Note that even though a higher IR scale, z−1
IR = 1.8TeV was needed to obtain rea-

sonable agreement with precision tests there is a drawback of increasing the IR scale. It

diminishes the chances of discovering new states such as heavy KK gauge bosons at the

LHC — for example, the next lightest W and Z-boson KK mode masses are increased

to ∼ 7 TeV, although there is still a lighter KK photon with mass 3.6 TeV, which might
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be seen at the LHC [38]. Moreover, note that the IR scale was obtained by fitting the

68% CL contour. Using the less restrictive 95% CL contour can result in a lower IR scale

and therefore increase the chances of detecting KK resonances at the LHC. The idea of

suppressing the S-parameter by adding brane kinetic terms and increasing the KK scale

has also been considered in technicolor-like Higgsless models [37]. However the effect was

of limited use in these models because KK modes were required to be lower than 1.8 TeV in

order to ensure tree-level unitarity and calculability. Interestingly, this is not a concern for

our model. As we will demonstrate in the next section, WW scattering has a very different

story in our model: due to the composite nature of the W -boson, tree-level unitarity may

break down earlier than the SM prediction, and we expect an overall form factor suppres-

sion to restore unitarity of W,Z boson scattering non-perturbatively. We never rely on

KK modes to help maintain perturbative unitarity, so there is no worry about them being

heavy. These issues will be explained in detail in the following section.

Finally we briefly comment on another electroweak precision test — the V parame-

ter which measures the correction to the Fermi coupling constant GF via a four-fermion

operator associated with µ decay: GF = GF,W (1 + V ). The V parameter can lead to

stringent constraints in RS1-type models with fermions localized on the IR brane because

the exchanged KK modes are universally strongly coupled to the IR brane [35]. However,

in our model we expect a negligible shift of the V parameter from W -boson KK modes. As

mentioned earlier large brane kinetic terms suppress higher KK modes near the IR brane

(recall that as ζ → ∞ we obtain an RS1-like scenario where only the lowest KK mode is

confined on the IR brane, while higher modes completely decouple). To estimate the V

parameter consider the next-heaviest KK mode above the W -boson, which is the dominant

contribution since higher KK modes are more decoupled. Numerically we find that for the

next-heaviest KK mode fL±2 (zIR) ≃ 10−2fL±1 (zIR). This does not include an enhancement

from boundary kinetic terms to the normalization of the lightest KK mode at the IR brane,

which can be up to O(10). In addition there is a suppression in the propagator from the

relatively large KK mass difference: (mW /m
(2)
W )2 ≃ 10−4. Combining all these factors leads

to the rough estimate V . 10−8. This is below the upper experimental constraint but note

that our estimate is crude and clearly will depend on the fermion details. Furthermore neu-

tral current processes which involve KK photons could lead to more stringent constraints

since these KK modes may not be sufficiently suppressed at the IR brane. Again the details

depends on the fermions and will be postponed for a future analysis.

4 WW Scattering

4.1 Form factors

One particular type of process within the Standard Model that calls for new physics at the

TeV scale is longitudinal W (or Z)-boson scattering. The tree-level perturbative amplitude

A of an individual graph of such processes involves divergences up to E4, (where E is the

center-of-mass energy): A = A(E/mW )4 + B(E/mW )2 + C, where A,B,C are constants.

In a true gauge theory like the SM where the W -boson is an elementary gauge field,

the E4 divergence vanishes due to gauge cancelation between the contact graph and s, t
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channel γ, Z exchanges. But the next leading divergence, E2 does not vanish within the

SM alone, and tree-level unitarity breaks down at 1.2 TeV, requiring new non-perturbative

physics to restore unitarity. However, due to the difficulty with quantitatively describing

physics involving strong dynamics, there has always been a strong preference to preserve

tree-level unitarity or perturbative calculability up to high energy scales. This preference

makes introducing an elementary Higgs boson to the SM a desirable scenario. In particular,

adding graphs involving the Higgs boson cancels the E2 divergence [39], while the remaining

constant piece can be perturbative with a Higgs boson lighter than 700 GeV [40]. Similarly

in alternative EWSB scenarios like 5D Higgsless models, preserving tree-level unitarity has

been strongly preferred, where summing over KK modes plays a similar role as a Higgs

boson and cannot be too heavy.

However, it should be emphasized that as a foundation of quantum field theory unitar-

ity itself is never jeopardized by WW scattering concerns. Preserving tree-level unitarity is

a theoretical preference that avoids having to deal with strongly-coupled theories. It is by

no means the choice that has to be taken by Nature. In fact almost equally importantly,

current experimental constraints on the behavior of WW scattering are rather moderate

due to the energy scale and luminosity reach of colliders. As will be shown in the next

section LEP and Tevatron data only constrains the trilinear gauge boson coupling to be

SM-like up to energies not much beyond the WW production threshold. So this allows

enough room for theoretical model building and the LHC to test for possible deviations

from the Standard Model predictions at high energy.

Based on these considerations the breakdown of tree-level WW unitarity at lower

energy scales is not sufficient to veto a theory, especially if it can also give quantitative

insights into how unitarity is restored by the strong dynamics. This is the case for our

emergent model where energy-dependent form factors of trilinear and quartic gauge boson

self-interactions are naturally associated with composite W,Z bosons which can lead to a

distinctive explanation of WW scattering and its unitarization. In particular the AdS/CFT

correspondence can be used to study form factors and their influence on WW scattering.

One way to compute the form factor is based on the overlap integral of onshell and offshell

profiles of the states involved in the interaction. This technique has been successfully

used in AdS/QCD models [41, 42], although [42] suggests that this approach may not give

trustworthy results at high energy since expected results based on conformal scaling cannot

be reproduced. Furthermore, unlike previous applications, large brane kinetic terms in our

model can cause considerable deviation at low energy where the profile distribution within

the IR brane thickness is important.

Nonetheless let us consider the form factors obtained from the profile overlap integral

with the details of the derivation given in appendix B. By performing this simpler compu-

tation a preliminary phenomenological analysis of possible deviations from the Standard

Model can be studied. At high energy we find that the E4 divergence in amplitudes of the

s, t-channel Z, γ exchange graphs are sufficiently suppressed, as can be seen in the WWZ

form factors depicted in figures 3 and 4 (see appendix B). This is because they involve a

three-point vertex WWZ, WWγ with an offshell Z, γ giving rise to a form factor which

falls off as ∼ q−2 at high energy, where q is the transferred momentum carried by the inter-
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mediate Z, γ. Concretely, we find that a good analytic approximation for the WWZ,WWγ

form factor at low energy is

F (q2) ≃ m2
Z

m2
Z + q2

. (4.1)

This behavior agrees well with ‘vector-meson pole dominance’ which follows as a general

result of a confining gauge theory with a gravity dual (although large brane kinetic terms,

as in our case, are not assumed) and is also compatible with QCD data [41, 42].

However as we will see in the next section, LEP and Tevatron bounds on the trilinear

gauge boson vertex requires the form factor to be constant for a larger energy range than

the naive prediction (4.1) based on the overlap integral method. As mentioned above

this caveat exists because the overlap integral method does not include the effects of the

brane thickness which should give a large correction to this prediction at low q and give

a larger constant region well above mZ . While an exact calculation needs to be done we

expect this behavior to follow from the fact that although in the 4D description the W,Z-

bosons are special resonances much lighter than the IR scale, they are still composites of

constituents confined at ∼ z−1
IR . So a large deviation from point-like behavior should not

occur well below z−1
IR . As discussed earlier from the 5D gravity perspective the W,Z-bosons

are similar to those in the original RS1 model — they are mostly localized on the IR brane

with a small profile that leaks into the bulk. Therefore well below z−1
IR the bulk effect should

be negligible and the gauge theory on the IR brane should be a good effective description.

Furthermore using the overlap integral method the contact interaction does not obtain

a q-dependent form factor suppression because there is no offshell transferred momentum

involved. However a q-dependent form factor is in general expected from the effective La-

grangian for composite vector boson interactions. This suggests that a more comprehensive

method to compute the three-point and four-point form factors is to use 5D propagators

to compute the three-point and four-point correlation functions. This is, of course, a more

involved calculation although related results exist in the literature [43, 44]. A detailed

calculation will be postponed for a separate study.

4.2 Unitarity of WW scattering

As we noted in the last subsection the sum over both the contact and s, t-channel graphs

in our simplified computation (using the overlap integral method) is approximately equiv-

alent to the contact graph contribution alone with leading divergence E4, since the s, t-

channel graphs are suppressed. In fact this failure to cancel the E4 term is expected

because gauge invariance is not exact in our composite model. Compositeness induces

energy-dependent form factors in the vertices and therefore introduces terms forbidden by

a fundamental gauge symmetry, ruining the usual gauge cancelation mechanism. The can-

celation is maximally violated using the overlap integral method since it is not sensitive to

energy-dependence in the contact interaction. It therefore can be used to obtain a lower

bound on the scale where tree-level unitarity breaks down. Consider the leading divergence

term for the contact graph amplitude:

iA(4)(s, cos θ) =
ig2

8m4
W

(3 − cos2 θ)s2, (4.2)
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which leads to the J = 0 partial wave amplitude

a0 =
1

32π

∫ 1

−1
d(cos θ)A(4)(s, cos θ) =

g2

48πm4
W

s2. (4.3)

Tree-level unitarity gives a bound on a0 via the optical theorem, namely: |Re a0| ≤ 1
2 [40].

Using this, we estimate the scale of tree-level unitarity breakdown to be ∼ 300 GeV. Again

this bound assumes that the E4 term from the contact interaction is not suppressed com-

pared to the s, t channel graphs near 300 GeV which are negligible — a drawback of the

overlap integral method. It is expected that a more accurate method which is sensitive to

the energy dependence in the contact interaction can delay the unitarity breakdown scale

to be near the O(TeV) confinement scale. A form factor suppression may cause a signifi-

cant deviation from the SM model prediction, where a faster growth of the WW → WW

amplitude at low energy can lead to distinctive signals at the LHC, as we will consider in

the next section.

A natural question that remains to be answered is what happens at high energy to

eventually help restore unitarity? In analogy to hadron scattering in QCD, we expect

two types of processes as the energy grows: hard elastic scattering and deep inelastic

scattering (DIS). High energy scattering of composite states depends on the physics of

the underlying constituents. Even though at present we are unable to exactly specify the

dual 4D gauge theory, some behavior of the underlying constituents (or ‘partons’) of the

W,Z-boson composite states (or ‘hadrons’) and their influence on composite scattering at

high energy can be ascertained based on the gauge/string duality.

As shown in [45], elastic scattering amplitudes for vector hadrons at large ‘t Hooft

coupling fall as E−2. This form factor suppression can be intuitively understood by noting

that at large momentum transfer q, the entire hadron must shrink to a smaller size ∼ q−1

to scatter elastically, leading to a power-law suppression determined by the scaling of the

wavefunction. This suggests that W -bosons in our emergent model undergo a similar

process in the elastic scattering region where they shrink to a size q−1 and obtain a similar

suppression. From the effective field theory point of view, below the IR cutoff scale where

only massless string states are relevant, such a form factor should be calculable based on

the 5D gravity model via three-point and four-point correlation functions of 5D massless

gauge fields (massless string states). Again we postpone a detailed study to future work.

In the DIS region the WW scattering amplitude becomes sensitive to short-distance

physics associated with the underlying constituents. Analogous to QCD, two factors are

relevant in this region to determine the scattering amplitude: the constituent-level scat-

tering amplitude, and the structure function characterizing the distribution of hadron con-

stituents. The UV behavior of scattering constituent partons is expected to be soft both

from the analogy with quark/gluon scattering in an asymptotically-free theory like QCD

and the behavior of gluon scattering amplitudes in strongly-coupled CFTs [46, 47]. How-

ever there is a substantial difference from QCD as shown in ref. [48]: due to the large

‘t Hooft coupling, parton splitting is quite substantial for partons carrying a moderate

Bjorken x. This means that there are no partons inside hadrons and causes the scattering

to be dominated by color-neutral objects, which are the hadrons themselves. Partonic
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scattering eventually occurs below exponentially small x ∼ e−
√
gN where the structure

function becomes q2 independent. Hence in the moderate x region the whole hadron can

only scatter ‘coherently’. One way this can occur is when the parent hadron splits into two

pieces with each sub-hadron shrinking to a size of order q−1, which eventually scatter and

then rejoin to form the parent hadron. Therefore for moderate x the effective ‘constituent’

or ‘scattering unit’ is sub-hadron whose structure function is suppressed at high q due to

the shrinking effect, similar to the form factor in the elastic region.

Although a careful study is needed to precisely ascertain how WW unitarization occurs

in our emergent model, it is promising that it already contains features such as form factor

suppression (∼ q−2), and UV soft parton scattering. Such a picture is not too dissimilar

from that encountered in QCD. For example, an interesting analogy is to again consider

ρ-meson scattering at high energy. Without knowing that they are composites of quarks

and gluons, we might worry about tree-level unitarity when treating them as massive gauge

bosons. But as is well known near ΛQCD, unitarity is eventually restored by partonic level

physics. Similarly, even though our model differs from QCD, it is dual to a strongly-coupled

gauge theory at large ’t Hooft coupling where similar effects could occur. In fact the non-

QCD feature of WW deep inelastic scattering would be interesting to further explore from

the 5D string theory.

Finally we summarize the expected high-energy DIS behavior of WW scattering in our

model using the results in [48]. The total cross section σT is given by

σT = σH(e−
√
gN . x . 1) + σP (0 . x . e−

√
gN ), (4.4)

where σH(σP ) involves hadronic (partonic) scattering. Assuming coherent scattering we

can write

σH =

∫ 1

e−
√

gN

dx1dx2 F (x1, q
2)F (x2, q

2)σ(WW → WW ), (4.5)

where σ(WW → WW ) is the elastic scattering cross section and F (x, q2) is the sub-

hadron distribution function. In particular for a vector boson, F (x, q2) ∝ q−2 according

to conformal scaling [48] causing the hadronic cross section to fall sufficiently fast as the

energy grows. The parton cross section

σP =
∑

a,b

∫ e−
√

gN

0
dx1dx2 fa(x1, q

2)fb(x2, q
2)σ(ab → F )B(F → WW ), (4.6)

where f(x, q2) is the parton distribution function and is essentially q2 independent [48]. In

this region the branching ratio B(F → WW ) should give sufficient suppression for WW

outgoing states. Therefore the large ‘t Hooft coupling causes the scattering in the high-

energy region to be dominated by hadronic scattering (σH), while at extremely small x

(nearly collinear scattering) we have partonic scattering in the inelastic region.
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5 Collider constraints and signatures

5.1 Anomalous couplings

The most important, generic phenomenological consideration of emergent electroweak sym-

metry breaking is the momentum dependent form factors that are induced in multi gauge

boson interaction vertices. It has been recognized for some time that composite gauge

bosons can give rise to anomalous couplings amongst themselves [4], leading to testable

phenomena [49].

Our primary task is to establish the viability of the theory when confronting the data

that already exists. Since form factors start deviating with respect to the SM at higher

energies, it is most expedient to compare the well-measured observables involving gauge

bosons in the high-energy frontier to our theory. These observables include e+e− → W+W−

at the LEP2 collider, and pp̄ → W±W∓,W±Z at the Tevatron. The first two of these

processes involve the three-point interactions γW+W−, and all three involve the three-

point interaction ZW+W−. Therefore, these observables are sensitive to deviations in

those three-point couplings.

To proceed, we must establish a notational framework that allows easy comparison to

the reported experimental results. Deviations in triple gauge boson vertices from their SM

values are often presented in the formalism of [50]:

LV
gWWV

= igZ1 (W †
µνW

µV ν − W †
µVνW

µν) + ikV W †
µWνV

µν , (5.1)

where gZ1 = kV = 1 at tree-level, gWWγ = −e and gWWZ = −e cot θw. It is convenient to

define deviations from the SM, or ‘anomalous couplings’, ∆gZ1 and ∆kV where gZ1 ≡ 1+∆gZ1
and kV ≡ 1 + ∆kV .

As we see from the current limits summarized in table 1, deviations of only a few

percent are tolerated by LEP2. Regarding Tevatron limits, a SM coupling is altered by

a form factor suppression function F (q2) where q2 is the momentum squared flowing into

the vertex. Limits are set on F (q2) by replacing triple gauge boson vertex interaction

couplings gSM with gSMF (q2) and then computing the expected cross-section. Of course,

at a lepton collider, the e+e− → Z∗ → W+W− cross-section for example probes the form

factor simply at the invariant center of mass energy of the collider F (q2) → F (s), where

s = (209GeV)2 at LEP2.

At the Tevatron and LHC, the expected cross-section is an integral over the differential

cross-section at many different invariant masses q2. For example, for pp̄ → WZ at the

Tevatron,

dσ

dq2
=

1

s

∑

a,b

σab(q
2)

∫ 1

q2/s

dy

y

[
fa/p(q

2/sy)fb/p̄(y) + (a ↔ b)
]
, (5.2)

where a, b are partons of the hadrons, σab(q
2) is the cross-section of ab → WZ, and s is the

center of mass energy of the pp̄ collisions. The W ∗WZ coupling within the computation for

σab(q
2) is itself q2 dependent due to the form factor suppression (and also renormalization
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LEP2 D0 (1.1 fb−1) CDF (1.9 fb−1) LHC (30 fb−1)

∆gZ1 (−0.051, 0.034) (−0.14, 0.34) (−0.13, 0.23) 0.0053

∆kγ (−0.105, 0.069) (−0.51, 0.51) — 0.028

∆kZ = ∆gZ1 — (−0.12, 0.29) (−0.76, 1.18) 0.058

Table 1. Limits on deviations of gZ
1 and kV from their SM values. LEP2 results are taken from [52],

CDF and D0 results from [53]. The CDF, D0 and LHC results assume that there is a dipole form

factor suppression for each anomalous coupling that scales as ∆g/(1 + q2/Λ2)2. The limits on each

∆g in the table for CDF and D0 are derived by assuming Λ = 2 TeV. The LHC column is taken

from the “ideal case” limit of Atlas in [54], and assumes Λ = 10 TeV. All limits are at the 95% CL.

group improvement, but that is subdominant here), and thus F (q2) gets sampled over

many different values. If the expected integrated cross-section is outside the 95% CL

interval quoted by experiment, the form factor is said to be ruled out.

Of course, it is not convenient to speak abstractly of ruling out functions F (q2). Rather,

it is more convenient to narrow F (q2) to a motivated subclass of functions with few pa-

rameters, and then constrain the parameters. With this in mind, and with guidance from

previous theory papers (see, e.g., eq. (11) of [51]), the collaborations generally define F (q2)

in terms of two parameters, ∆g and Λ, where the form factor plays the role of changing

some suitably normalized SM coupling (such as gZ1 = 1) into

gSM =⇒ gSM +
∆g

(1 + q2/Λ2)2
, (5.3)

where gSM = 1 or 0 or whatever value is appropriate. This is the so-called “dipole form

factor”, and it is the convention by which experimental groups search for deviations. CDF

and D0 often set Λ = 2TeV and then quote 95% CL intervals on the ∆g anomalous

couplings, as is presented in table 1. At the LHC, it is customary to choose Λ = 10TeV

when quoting expected sensitivity intervals on the anomalous couplings.

5.2 Form factor viability of emergent electroweak symmetry breaking

A good approximation to the form factor of the emergent theory is

F (q2) =

{
1, for q2 < Λ2

C

(1 + Λ2
C/Λ2

EW )/(1 + q2/Λ2
EW ), for q2 > Λ2

C

(5.4)

where ΛEW and ΛC are taken to be free parameters. By the overlap integral method ΛEW =

mZ is a low scale in comparison to typical interaction energies of current high-energy

colliders. Therefore, this low scale of ΛEW induces significant suppressions at accessible

collision energies. The more precise LEP2 limits rule out the model unless ΛC is greater

than LEP2 center of mass energy, i.e., ΛC > 209GeV.

We now wish to estimate what constraints Tevatron data puts on ΛC . There is a

challenge in doing this, since the form factor of (5.4) is substantially different than the form
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Figure 2. Contours of equal cross-section for pp̄ → W+W− in the −∆g vs. ΛC plane for two

different values of ΛEW . This plot enables a direct comparison between limits experimentalists

obtain on ∆g after applying their form factor of eq. (5.3) with Λ = 2 TeV, and the parameters of

our form factor eq. (5.4). The first line with ΛEW = mZ is the value from the overlap integral

method. Tevatron limits require that −∆g < 0.13 which implies that ΛC > 285 GeV at 95% CL

when ΛEW = mZ .

factor of (5.3) that the experimentalists use to quote limits on the anomalous couplings.

The method we use to compare is simply to obtain the total cross-section for some given ∆g

in the experimentalists form factor definition (with Λ = 2TeV) and then find what values of

{ΛEW ,ΛC} match that cross-section and draw a cross-section equivalence plot. In figure 2

we show this correspondence of ∆g with ΛC for two different values of ΛEW : ΛEW = mZ ,

which is the value obtained using the overlap integral method, and the somewhat higher

value of ΛEW = 5mZ . Of course, higher ΛEW and higher ΛC correspond to smaller

magnitudes of anomalous couplings ∆g.

We see from the plot that the 95% CL limit of −0.13 (see table 1) for the anomalous cou-

pling of triple gauge boson vertices corresponds to ΛC = 285GeV (205GeV) if ΛEW = mZ

(5mZ). These values are thus the lower limits on ΛC from Tevatron analyses. A reasonable

estimate for ΛC is near the TeV scale below which all couplings are SM-like. Violations of

perturbative unitarity only happen at q2 > Λ2
C where new degrees of freedom associated

with the compactification scale come in to unitarize the amplitude. In this case, strongly

coupled V V → V V scattering becomes an interesting tool of discovery for these theories.

5.3 Large Hadron Collider

The expected sensitivities of anomalous triple gauge boson vertices at the LHC is more than

an order of magnitude better than Tevatron capabilities. This can be seen from the ex-

pected sensitivities at the LHC in 30 fb−1 presented in table 1. If a signal for beyond the SM
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physics does develop in vector boson scattering at the LHC, there are many options to study

the detailed underlying theory. Measuring all possible observables associated with vector

boson final states will be part of the physics programme at the LHC in any event, and one

would be able to study quantitatively all the changes that occur. These studies can be bro-

ken up into two categories, vector boson fusion processes and diboson production processes.

V V → V V scattering can be separated from other modes of generating V V final

states by looking for a few characteristics of the final state associated with these modes.

The most important feature is that the initial state vector bosons must arise by radiating off

incoming quarks of the proton, and thus there will be two extra jets that are at high rapidity

accompanying the event. This is why V V → V V is often expressed as the equivalent

pp → V V jj, where these last two ‘tagging’ jets are measured. To further isolate this

signal over other potential backgrounds, such as tt̄ production, it is required that there

is very little jet activity in the central region. This is characteristic of the signal since

no color exchanges across the wide central rapidity occur, and emission of QCD radiation

is suppressed. These characteristics have been understood for some time now [55]. An

example quantification is given by the ATLAS collaboration, who has chosen for some

samples that ∆η = 5 for the two tagging jets (far separated) with energies greater than

300GeV, and that no other more central jet exists with pT > 30GeV [56].

It is this V V → V V vector boson scattering that causes concern for unitarity discussed

earlier. If an effective form factor suppression for quartic gauge boson vertices scales as

1/q4 and the would-be partial wave amplitude scales as q4 (see discussion in section 4),

the resulting composite amplitude scales as |A|2 ∼ q4/q4 = q0. Therefore, the total cross-

section for V V → V V scales with |A|2/q2 ∼ 1/q2 as the SM rate does, and the resulting

differential cross-section could be similar in value to the SM. It is unlikely that it will be the

same, and thus studies of this mode are extremely useful to see the precise differences. The

differences are not computable at this time, but measurement will have its own enduring

value as theory catches up.

If the form-factor scale ΛC is well above the TeV scale, then it becomes important

to consider the small deviations of the coupling from the assumed value of 1 (i.e., its SM

value) in our form factor for q2 < Λ2
C . Small deviations are to be expected, but there is no

obvious functional form to choose to study this. Therefore, any reasonable functional form

that is descriptive to changes of observables from SM values will do. A convenient choice

would simply be the choice made by the experimental collaborations, and the results in

table 1 are to be consulted for LHC sensitivity of these deviations.

The second kind of process is diboson production, which we define here to mean all

underlying two to two processes initiated by quarks that generate vector boson pairs. It is

in these studies that the triple gauge boson vertices can be measured and compared to SM

values. As we mentioned above, our model may even have very large deviations compared

to LHC sensitivities. Nevertheless, we wish to make some further comments about how

to study the deviations if they occur, and what qualitative features would develop in the

observables if this model is a correct description of nature.

A fruitful approach to organizing observables is to separate the processes that mostly

involve multiple gauge boson interactions versus those processes that do not. For example,
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the production of W±Z at the LHC is primarily through s-channel W ∗, and thus its rate is

highly dependent on the details of the WWZ vertex. On the other hand, ZZ production at

the LHC is primarily initiated by t-channel quark exchange diagrams and the production

cross-section is mostly dependent on the Zq̄q interaction vertex (assuming this vertex has

negligible form factor suppression) [57]. At high invariant mass energies, greater than

about ΛC , the ZZ production cross-section in our model should remain similar to that

of the SM, whereas the W±Z production cross-section should diminish rapidly. Thus, a

useful signature would be the ratio σ(WZ)/σ(ZZ) as a function of center of mass energy of

the final state vector bosons. We expect that well above ΛC this ratio will be significantly

diminished compared to the SM prediction of

σ(WZ → 3l + ν)

σ(ZZ → 2l + 2ν)
= 1.7 ± 05, (5.5)

in the induced three to two lepton ratio. This ratio is obtained from [56] after cuts applied.

As we have seen, few of the observables in the LHC regime can be computed precisely

at this time due to the complexity in determining couplings at high energies in this theory.

Despite this, we know that several generic features must come about, and these features

can be verified by experimental measurements: vector boson production at high invariant

mass will be altered by non-perturbative dynamics one way or another, through dramatic

suppression factors or through new dynamics unitarizing amplitudes, and observables that

are supported mostly by triple gauge boson vertices will show a differential suppression in

rate compared to other observables q2 > Λ2
C .

Finally, we wish to remark that the KK photon described earlier is likely to be the

lightest exotic state in the spectrum. Its phenomenological signatures are very similar to

Z ′ physics well studied in the literature. The discovery reach depends of course on the

precise couplings, which are not determined at this time but are expected to be O(1) in

electroweak strength. From a variety of Z ′ theories with electroweak coupling strength

one can estimate that direct limits from Tevatron should be MKK
>∼ 800GeV and direct

limits from LHC should be MKK
>∼ 3TeV after 10 fb−1 of data (see e.g. figures 1.6 and

1.7 of [58]). If the coupling drops well below electroweak strength, which may occur from

some exotic choices of fermion profiles and gauge kinetic terms on the brane, decoupling

from collider observables happens rapidly and a surprisingly low mass scale — even tens of

GeV — could be allowed phenomenologically (cf. [59]), although this extreme is unlikely

from our theory point of view.

6 Conclusion

We have presented a model of electroweak symmetry breaking in a warped dimension where

electroweak symmetry is broken at the Planck scale. The masses of the W,Z bosons result

from the breaking of conformal symmetry and do not rely on a Higgs mechanism. Large

brane kinetic terms are responsible for generating an anomalously light first KK mode

that can be identified with an electroweak gauge boson, while simultaneously allowing the

higher KK modes to be at the TeV scale. This separation of scales crucially assumes that
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the induced brane-coupling renormalization (or related brane thickness) from the boundary

kinetic terms is sufficient to render the 5D coupling perturbative. With this assumption

the 5D warped model provides a consistent low-energy description.

Interestingly, by the AdS/CFT correspondence this model is dual to a strongly-coupled

CFT where the W,Z bosons are identified as composite states. In this way there is no fun-

damental electroweak symmetry in our model and electroweak symmetry breaking emerges

in the IR. This realizes an old idea of mimicking the electroweak gauge bosons with the

ρ-mesons in QCD, except that in our model the 4D theory is always strongly-coupled.

Furthermore via the gravity dual we are able to quantitatively check consistency with elec-

troweak precision tests. In particular we find reasonable fits to the S and T parameters

as well as show that the V parameter is likely to be small. A novel feature of our setup

is that there is a custodial symmetry (a global SU(2) symmetry in the dual CFT) which

protects the T parameter and is akin to isospin symmetry in QCD.

The composite nature of the W,Z bosons gives rise to energy-dependent form factors

and suggests distinctive signatures at the LHC. Partly motivated by the form factor derived

by the profile overlap integral method we have presented a more general form factor that

characterizes emergent electroweak symmetry breaking. This form factor has been used to

analyse constraints arising from LEP2 and the Tevatron, updating previous analyses and

shows that there is still enough parameter space to allow for composite gauge bosons. In

fact the LHC has potential to discover deviations in triple gauge boson vertices and we

have suggested ways to organize observables in order to optimize future searches.

Our emergent model is by no means complete. Although we have identified how fermion

masses can be incorporated in a straightforward manner we have not performed a detailed

analysis and this could affect the model in substantial ways. Similarly a better understand-

ing of unitarity in W -boson scattering is needed. This most likely requires computing the

three- and four-point correlation functions in 5D to confirm the form factor suppression in

the high-energy elastic scattering argued to help restore unitarity. In addition we relied on

the brane thickness of the IR brane to argue for a smooth interpolating limit between a

brane-localized field and a bulk field. This is a crucial aspect of our model and a thorough

investigation of how exactly this affects the fermion and form factor calculations remains

to be done. In addition there are interesting questions such as the nature of the under-

lying gauge theory and string theory realization as well as an intriguing Seiberg duality.

Even though there are remaining issues and questions, our emergent model does provide

a glimpse of how composite W,Z bosons can be made compatible with experiment in a

framework that can be used to further develop this idea. It could be that electroweak

symmetry breaking arises from a deeper level of substructure underlying the SM, where

there is no Higgs sector and electroweak gauge symmetry is not even fundamental. The

LHC will soon let us know.
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A Alternative derivation of a light Kaluza-Klein mode with brane kinetic

terms

In this appendix we present a more transparent way to see how a light collective mode

appears when a brane kinetic term is added. As will be shown a brane kinetic term

induces significant renormalizing and mixings of the original Kaluza-Klein kinetic term

(i.e. before adding brane kinetic terms), which after canonically normalizing the kinetic

term and diagonalizing the mass matrix gives rise to a suppression factor in the mass of

one special mode.

For simplicity we will consider the case where the boundary conditions are (−+).

Then after adding an IR brane kinetic term we can study how the kinetic terms and mass

matrix of the Kaluza-Klein modes changes. This is exactly the same situation for the W -

boson in our model, and similarly expect the qualitative features to generalize to the more

complicated case of the Z-boson with mixed boundary conditions.

The 4D Lagrangian of the KK modes with (−+) boundary conditions is given by:

L4 =
∞∑

n=1

−1

4
(F (n)

µν (x))2 − 1

2
m2
n(A

(n)
µ (x))2, (A.1)

where the Kaluza-Klein masses mn 6= 0, since with (−+) boundary conditions there is no

massless zero mode. Note that in the KK basis A
(n)
µ , the kinetic terms of all KK modes

are canonically normalized and the Kaluza-Klein mass matrix is diagonal. Denoting the

5D profile for the nth KK mode by fn(z), it is known that the IR overlap fn(zIR) ∼
√

2k

is approximately universal for all KK modes [60].

Let us now introduce an IR brane kinetic term of the form:

△L4 = −
∞∑

n,k=1

1

4
ζIRF (n)

µν (x)Fµν(k)(x)fn(zIR)fk(zIR), (A.2)

where ζIR is a constant in units of k−1. The introduction of (A.2) contains additional

mixings in the kinetic terms of the original KK modes in the 4D Lagrangian. Thus in the

KK basis A
(n)
µ , instead of an identity matrix, the kinetic energy matrix becomes




1 + 2ζIRk 2ζIRk . . .

2ζIRk 1 + 2ζIRk . . .
...

...
. . .


 . (A.3)

While in principle this is an infinite-dimensional matrix, it is usually truncated as a finite

N ×N matrix where N ≃ ΛIRzIR ∼ 10−100 characterizes the number of KK modes below
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the local cutoff scale, ΛIR. It is easy to check that a truncated version of the matrix (A.3)

can be diagonalized with eigenvalues:

(
IN−1,N−1 0

0 1 + Na

)
, (A.4)

where a = 2ζIRk and IN−1,N−1 is (N − 1) × (N − 1) unit matrix. Clearly all eigenvalues

are one except for a special eigenmode which has a large eigenvalue 1 + Na. In terms of

the original KK basis this special eigenmode is given by

A′(N)
µ =

1√
N

N∑

n=1

A(n)
µ . (A.5)

This relation implies that this mode is like a ‘collective’ mode containing an equal con-

tribution from each of the original KK modes A
(n)
µ . To canonically normalize the ki-

netic term of A
′(N)
µ , we perform a non-unitary rescaling and define the normalized mode

A
′′(N)
µ ≡

√
1 + NaA

′(N)
µ . As we will show it is essentially this large rescaling factor asso-

ciated with the collective mode that leads to a large suppression factor for the mass term

related to the light mode after diagonalizing the KK mass matrix.

The next step is to diagonalize mass matrix. Analytical expressions can be obtained

for the case N = 3. The transformation leading to the new basis A
′′(n)
µ with canonically

normalized kinetic terms is




A
′′(1)
µ

A
′′(2)
µ

A
′′(3)
µ


 =




− 1√
2

0 1√
2

− 1√
6

√
2
3 − 1√

6√
1+3a

3

√
1+3a

3

√
1+3a

3







A
(1)
µ

A
(2)
µ

A
(3)
µ


 . (A.6)

Using (A.6) the diagonal mass-squared matrix in the original basis can be rewritten in

terms of the new basis A
′′(n)
µ to give:




1
2 (m2

1 + m2
3)

1
2
√

3
(m2

1 − m2
3)

−1√
6

m2

1
−m2

3√
1+3a

1
2
√

3
(m2

1 − m2
3)

1
6(m2

1 + 4m2
2 + m2

3)
−1
3
√

2

m2

1
−2m2

2
+m2

3√
1+3a

−1√
6

m2

1
−m2

3√
1+3a

−1
3
√

2

m2

1
−2m2

2
+m2

3√
1+3a

1
3
m2

1
+m2

2
+m2

3

1+3a


 . (A.7)

The eigenvalues of the mass matrix (A.7) contain two eigenvalues of order z−1
IR , as well as

a light mode with mass ∼ z−1
IR/

√
a. By increasing N one can numerically check that these

results persist and there is always a light mode with mass:

m′
1 ∝ z−1

IR√
ζIRk

. (A.8)

Thus, up to an order one factor this result agrees well with the mass found in section 2.1 by

directly solving the equations of motion with the boundary conditions. This shows that the

existence of a light collective mode originates from a large wavefunction renormalization

induced by kinetic mixing from the boundary kinetic term.

– 32 –



J
H
E
P
1
1
(
2
0
0
9
)
0
8
0

B Form factor calculation via profile overlap integral

In this appendix we present the details of computing form factors using the profile overlap

integral. As discussed in the main text we do not include the effects of large brane kinetic

terms which will likely modify the low q behavior. Furthermore the overlap integral method

does not give momentum dependent form factors for the contact interaction. Therefore

any deviation in the WW scattering amplitude using this method is encoded in the form

factors of WWZ,WWγ vertices. To be more precise, possible intermediate states in the

s, t channel exchange graphs contain γ, Z-boson and higher KK modes γ(n), Z(n). These

modes have a universal form factor in their coupling to WW . In 5D models the form factor

can be calculated in terms of a wave function overlap integral. An AdS/QCD example can

be found in [41] where the pion electromagnetic form factor is calculated by an overlap

integral of an onshell pion profile Φ(z) and offshell photon profile J(q2, z), where q is the

transferred momentum carried by the probe photon.

Therefore in the overlap integral external states or states whose compositeness is being

probed — like the incoming and outgoing W -bosons — are represented by an on-shell

profile, while the probe as the intermediate state like the exchanged γ, Z is represented

by a general offshell profile with q2 dependence. The offshell profile is inferred from the

known onshell profile by simply replacing m2 by −q2 in the bulk solution. Thus the general

solution f(q2, z) for offshell modes following from the bulk equation of motion (2.10) is

f(q2, z) = Nz(J1(
√

−q2z) + bY1(
√

−q2z)), (B.1)

where N, b are arbitrary constants. Notice that depending on the sign of −q2, the solution

can be divided into two qualitatively distinct regions: a timelike region with −q2 > 0, which

includes the onshell case, and a spacelike region with −q2 < 0. In fact it is more convenient

to define a real positive variable, p ≡
√

−q2 for the timelike region, while p ≡ −i
√

−q2 for

the spacelike region.

To determine the constants N, b we require the general solution (B.1) satisfy two

conditions: it should match the onshell result at −q2 = m2, and be canonically normal-

ized like an onshell mode,2 so that all p−dependent changes due to compositeness are

represented by a vertex form factor. If canonical normalization is not chosen then there

is a form factor associated with the modified propagator which is an equivalent but more

complicated procedure.

These conditions can be satisfied by imposing the same IR boundary conditions for the

offshell mode with the proper substitution of m2 → −q2 and then canonically normalizing

the profile (equivalent to imposing a p−dependent value as the Dirichlet boundary condition

for the source field on the UV brane). This leads to the form factor:

FWWZ(q2) =
1

NZ(q2)N2
W

{[∫ zIR

zUV

dz

kz
fL3(q2, z)(fW (z))2

]
+ ζLfL3(q2, zIR)(fW (zIR))2

}
.

(B.2)

2In the electroweak precision analysis section only the photon is strictly canonically normalized, while

the normalization of Z is close to 1. But for the present purposes, it is sufficient to require canonical

normalization for all modes.
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Figure 3. The form factor FWWZ (p) in the spacelike region for z−1

IR
= 1.8TeV.

Notice that only the fL3 component of the Z profile is relevant since the interaction comes

from the kinetic term in the bulk Lagrangian −1
4(FLa

MN )2. The onshell W -boson profile fW is

approximately given by (2.17), and NW is obtained by requiring the canonical normalization

of fW (z). Using (2.12) and (2.18) fL3(q2, z) is given by

fL3(q2, z) = NZ(q2)z
[
J1(
√

−q2z) + bL3
n (q2)Y1(

√
−q2z)

]
, (B.3)

where

bL3
n (q2) =

ζLk
√

−q2zIRJ1(
√

−q2zIR) − J0(
√

−q2zIR)

Y0(
√

−q2zIR) − ζLk
√

−q2zIRY1(
√

−q2zIR)
. (B.4)

The normalization NZ(q2) is given by

N2
Z(q2) =

[∫ zIR

zUV

dz

kz
(fB(q2, z))2 + (fL3(q2, z))2

]
+ ζL(fL3(q2, zIR))2 + ζY (fB(q2, zIR))2

+
ζQ

g2
Y 5 + g2

L5

(
gY 5f

B(q2, zUV ) + gL5f
L3(q2, zUV )

)2
, (B.5)

where fB(q2, z) still appears indirectly through the normalization condition. Like

fL3(q2, z), an explicit expression for fB(q2, z) is obtained from (2.12), (2.18) and (2.19).

It is difficult to obtain an analytic expression for the form factor since the small ar-

gument expansion for Bessel functions that was used for light onshell modes, is no longer

valid with a more general argument like pz. Instead the form factor FWWZ(p) can be eval-

uated numerically and then an analytic fit can be done in the low-energy region to obtain

an approximate analytic expression. The numerical results are shown in figures 3, and 4

where the form factor is normalized so that F (0) = 1.

In figure 3 the form factor in the spacelike region monotonously decreases as p increases.

This behavior also occurs in the timelike region in figure 4, except that it is interspersed

with periodic peaks and troughs. The position of every peak and trough coincides exactly
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Figure 4. The form factor FWWZ (p) in the timelike region for z−1

IR
= 1.8TeV. The pole structure

corresponds to the photon and Z-boson KK modes.

with the KK mass poles: peaks are KK Z-bosons, while troughs are KK photons. This

form factor structure can be compared with that expected from a confining gauge theory

with a gravity dual, namely [42]

Fab(q
2) =

∞∑

n=1

fngnab
q2 + m2

n

, (B.6)

where Fab(q
2) is the form factor associated with a spin-1 current for two external hadrons

a, b, with coupling gnab to an nth vector hadron state with mass mn and decay constant fn.

This expression shows that in a confining gauge theory with large ‘t Hooft coupling, the

form factor can be written as a sum over vector-meson poles. Our results are consistent with

this formal prediction: a simple analytic fit in the low energy region (Z-pole dominant) for

both the timelike and spacelike form factor gives m2
Z/(m2

Z+p2), which appears as eq. (4.1).

Note that although it is difficult to find a global fit for the structure of the time-like

region, this fit is good in the low-energy region (smooth out the peak at Z pole) which

is monotonous and more relevant for LHC study. Interestingly a similar pole structure

was originally conjectured for QCD by Sakurai [42, 61], where it was suggested that the

form factor of an isospin-hadron H is given by the ρ meson pole: F (q2) ≈ fρgρHH

q2+m2
ρ
. For

practical application, we can show that based on kinematics in high-energy scattering the

momentum transferred in the t-channel is mostly spacelike, while in the s-channel it is

always timelike.
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